Cancer immunosurveillance and immunoediting in humans, ways to improve immunogenicity of tumor cells and to design better immunotherapy protocols

INNATE IMMUNITY

Nature Reviews | Immunology

Nature Reviews | Immunology

Toll-like receptory

- Transmembránové receptory I. typu
- extracelulární doména bohatá na leucin
- intracelulární Toll/IL-1 receptor (TIR) doména

Receptor	Ligand	Origin of ligand	Ref
TLR1	Triacyl lipopeptides Soluble factors	Bacteria and mycobacteria Neisseria meningitidis	
TLR2	Lipoprotein/lipopeptides Peptidoglycan Lipoteichoic acid Lipoarabinomannan Phenol-soluble modulin Glycoinositolphospholipids Glycolipids Porins Atypical lipopolysaccharide Atypical lipopolysaccharide Zymosan Heat-shock protein 70*	Various pathogens Gram-positive bacteria Gram-positive bacteria Mycobacteria <i>Staphylococcus epidermidis</i> <i>Trypanosoma cruzi</i> <i>Treponema maltophilum</i> <i>Neisseria</i> <i>Leptospira interrogans</i> <i>Porphyromonas gingivalis</i> Fungi Host	
TLR3	Double-stranded RNA	Viruses	
TLR4	Lipopolysaccharide Taxol Fusion protein Envelope protein Heat-shock protein 60* Heat-shock protein 70* Type III repeat extra domain A of fibronectin* Oligosaccharides of hyaluronic acid* Polysaccharide fragments of heparan sulphate* Fibrinogen*	Gram-negative bacteria Plants Respiratory syncytial virus Mouse mammary-tumour virus <i>Chlamydia pneumoniae</i> Host Host Host Host Host	
TLR5	Flagellin	Bacteria	
TLR6	Diacyl lipopeptides Lipoteichoic acid Zymosan	<i>Mycoplasma</i> Gram-positive bacteria Fungi	
TLR7	Imidazoquinoline Loxoribine Bropirimine Single-stranded RNA	Synthetic compounds Synthetic compounds Synthetic compounds Viruses	
TLR8	Imidazoquinoline Single-stranded RNA	Synthetic compounds Viruses	
TLR9	CpG-containing DNA	Bacteria and viruses	
TLR10	N.D.	N.D.	
TLR11	N.D.	Uropathogenic bacteria	

Mortality curves at various periods of human history

Improvement of hygiene, beginning in the mid–19th century (preventing the transmission of infection) Introduction of vaccines, beginning in the late 19th century (preventing disease in infected individuals) Development of anti-infectious drugs, beginning in the early 20th century (preventing death in patients with clinical disease). 1957- formulation of the cancer immunosurveillance hypothesis proposed by Thomas and Burnet: "sentinel thymus dependent cells of the body constantly surveyed

host tissues for nascent transformed cells"

Role of IFNg in protection against cancer

Kaplan, Daniel H. et al. (1998) Proc. Natl. Acad. Sci. USA 95, 7556-7561

Dunn et al. Nature
Reviews Immunology 6 ,
836–848 (November
2006)
doi:10.1038/nri1961

nature REVIEWS IMMUNOLOGY

Mouse immunodeficiency	Immune status	Tumour susceptibility relative to wild-type mice	Refs
Rag1 or Rag2	Lacks T cells, B cells and NKT cells	↑ MCA-induced sarcomas ↑ Spontaneous intestinal neoplasias	6,27
Rag2 ^{-/-} Stat1 ^{-/-}	Lacks T cells, B cells and NKT cells; insensitive to IFN α , IFN β and IFN γ	↑ MCA-induced sarcomas ↑ Spontaneous intestinal and mammary neoplasias	6
SCID BALB/c	Lacks T cells, B cells and NKT cells	↑ MCA-induced sarcomas	27
Tcrb	Lacks αβT cells	↑ MCA-induced sarcomas	100
Tcrd	Lacks γδ T cells	↑ MCA-induced sarcomas ↑ DMBA- plus TPA-induced skin tumours	100
Tcrb-/-Tcrd-/-	Lacks $\alpha\beta$ T cells and $\gamma\delta$ T cells	↑ DMBA- plus TPA-induced skin tumours	101
J α 281 TCR gene-segment deficiency	Lacks NKT-cell subset	↑ MCA-induced sarcomas	19,27,102
Lmp2	Lacks LMP2 subunit	↑ Spontaneous uterine neoplasms	103
Asialo-GM1-specific antibody treatment	Lacks NK cells, monocytes and macrophages	\uparrow MCA-induced sarcomas	27,102
NK1.1-specific antibody treatment	Lacks NK cells and NKT cells	↑ MCA-induced sarcomas	27,102
Thy1-specific antibody treatment	Lacks T cells	↑ MCA-induced sarcomas	27,102
Immunization with self antigen	Increased regulatory T-cell activity	\downarrow Latency of MCA-induced sarcomas	104
Stat1	Insensitive to IFN α , IFN β and IFN γ	\uparrow MCA-induced sarcomas Wider tumour range in Stat1 ^{-/-} Tp53 ^{-/-} mice	6,18
lfngr1-'-	Insensitive to IFNy	↑ MCA-induced sarcomas Wider tumour range in <i>lfng</i> r1- ^{2,} Tp53- ^{2,-} mice	6,18
lfnar1-/-	Insensitive to IFN and IFN $\!\beta$	↑ MCA-induced sarcomas	9
lfng-≁-	Lacks IFNy	↑MCA-induced sarcomas C57BL/6 mice: ↑ Spontaneous disseminated lymphomas; ↓ latency of tax-transgene-induced leukaemia BALB/c: ↑ Spontaneous lung adenocarcinomas	19,20,105
Gmcsf ⁺⁻ lfng ⁻⁺⁻	Lacks GM-CSF and IFNy	↑ Spontaneous lymphomas ↑ Non-lymphoid solid cancers	21
Pfp ^{-/-} Ifng ^{-/-}	Lacks perforin and IFNy	↑ MCA-induced sarcomas ↑ Spontaneous disseminated lymphomas	19,20
<i>Pfp</i> ́b2ḿ-	Lacks perforin, MHC class I molecules and CD8° T cells	\uparrow Spontaneous disseminated lymphomas	106
Pfp ^{-/-}	Lacks perforin	↑ MCA-induced sarcomas ↑ Spontaneous lymphomas ↑ Spontaneous lymphomas and sarcomas in Pfp ^{-/-} Tp53 ^{+/-} mice	19,102,107
Trait	Lacks TRAIL	↑ MCA-induced sarcomas ↑ Spontaneous lymphomas ↑ Spontaneous lymphomas and sarcomas in <i>Trait</i> ^{-/-} <i>Tp53</i> ^{+/-} mice	108,109
TRAIL-specific antibody treatment	Blockade of TRAIL	↑ MCA-induced sarcomas ↑ Spontaneous lymphomas and sarcomas	10
NKG2D-specific antibody treatment	Blockade of NKG2D	↑ MCA-induced sarcomas	39
ll12a-/-	Lacks IL-12	↑ DMBA- plus TPA-induced papillomas	68
ll23a ^{-/-}	Lacks IL-23	\downarrow DMBA- plus TPA-induced papillomas	68
ll12b ^{-/-}	Lacks IL-12 and IL-23	↑ MCA-induced sarcomas ↓ DMBA- plus TPA-induced papillomas	40,68
IL-12 treatment	Exogenous IL-12	\downarrow MCA-induced sarcomas	26
α-GalCer treatment	Exogenous NKT-cell activation	↓ MCA-induced sarcomas	110
Tnf	Lacks TNF	\downarrow DMBA- plus TPA-induced papillomas	69
Conditional Socs1	SOCS1 expressed only by T cells and B cells	↑ Spontaneous colitis-associated colorectal adenocarcinomas	70
Conditional Socs1-/- plus IFNγ-specific antibody treatment	SOCS1 expressed only by T cells and B cells; IFNγ depletion	↓ Spontaneous colitis-associated colorectal adenocarcinomas	70

b2m, β, -microglobulin; DMBA, 7,12-dimethylbenz(a)anthracene; α-GalCer, α-galactos/derinofitas b2m, β, -microglobulin; DMBA, 7,12-dimethylbenz(a)anthracene; α-GalCer, α-galactos/deramide; GM1, a ganglioside; Gmcsf, granulocyte/macrophage colonystimulating factor: //nar1, type 1 IFN receptor 1: //n, interferon; //ngr1, IFN yreceptor 1: //, interferon; //ngr1, istrateron; //ngr2, interferon; //ngr2, in

Cancer immunosurveillance and immunoediting hypothesis

• immune system is capable of early recognition and elimination of cell in the process of malignant transformation

- mediated by various components of the immune system (T-cells, NKT cells, NK cells)
- scarce evidence for its existence in humans

Cancer immunosurveillance and immunoediting hypothesis

GP Dunn, Immunity, 2004

Tumor cell specific enrichment of IFNy producing T cells in the bone marrow of patients with MGUS

Infiltration of tumor tissue by T cells predicts better prognosis in colon cancer

Infiltration of tumor tissue by T cells predicts better prognosis in colon cancer

Infiltration of tumor tissue by T cells predicts better prognosis in colon cancer

Factors inhibiting anti-tumor immune response

Strategies to enhance anti-tumor immune response

Cell surface calreticulin expression is a marker of immunogenic cell death

Cell surface calreticulin expression is a marker of immunogenic cell death

Bortezomib induces immunogenic cell death in myeloma cells

Signals of immunogenic cell death

Principal of immunotherapy

Schéma protokolu protinádorové imunoterapie

Indukce nádorově specifických T lymfocytů na modelu akutní myeloidní leukér

Jednotka buněčné imunoterapie UK, 2.LF, FN Motol-2007

Povolení SÚKL pro přípravu vakcín na bázi dendritických buněk-2008

CERTIFIKÁT SVP PRO VÝROBCE Část 1

CERTIFICATE OF GMP COMPLIANCE OF A MANUFACTURER Part 1

Timing of immunotherapy

Adverse effects of immunotherapy

Timing of immunotherapy

Target populations

Primary prevention- individuals at risk of cancer development, hereditary cancer syndromes (e.g. families with hereditary colorectal cancer, or women with BRCA mutations) where specific mutations can be detected and the increased risk for cancer is well established.

Secondary prevention- is feasible in patients with preneoplastic lesions, wherein preventive anti-tumor vaccination should prevent progression to malignant tumors. Examples of the latter are patients with colon polyps, oral leukoplakia, and cervical intraepithelial neoplasia, or monoclonal gammopathy of unknown significance.

Tertiary prevention- Many tumors can be eradicated or substantially reduced by current treatment modalities. Cancer vaccines could be used as a form of adjuvant therapy designed to elicit and boost antitumor immunity in patients with minimal residual disease.

Targeting of tumor clonogenic progenitors

• Important therapeutic implications

• if treatment does not eliminate cancer stem cells, tumor regenerates once the treatment stops

